
Object-Oriented Programming

 1 - 1

SOFTWARE and
SOFTWARE ENGINEERING

●● The Nature of Software

●● History of Software Development

●● Software Engineering Paradigms and Technology

●● Software Complexity, Object-Oriented Requirements

Analysis (OORA), and Object-Oriented Design (OOD)

Object-Oriented Programming

 1 - 2

THE NATURE OF SOFTWARE

✓✓ Characteristics of Software

✓✓ Failure Curves for Hardware

and Software

✓✓ Software Components

✓✓ Software Configuration

Object-Oriented Programming

 1 - 3

THE NATURE OF SOFTWARE

Characteristics of Software

●● Software is programs, documents, and data.

●● Software is developed or engineered; it is not manufactured like

hardware.

●● Software does not wear out, but it does deteriorate.

●● Most software is custom-built, rather than being assembled

from existing components.

●● Software is a business opportunity.

Object-Oriented Programming

 1 - 4

THE NATURE OF SOFTWARE

Failure Curves for
Hardware and Software

Time Time

Failure

Rate

"Infant

Mortality"

"Wear

Out"

Ideal

Actual

Change

FAILURE CURVE
FOR HARDWARE

FAILURE CURVE
FOR SOFTWARE

Object-Oriented Programming

 1 - 5

THE NATURE OF SOFTWARE

Software Components

●● Software programs, or software systems, consist of

components.

●● A set of components which comprise a logical unit of software is

called a software configuration item.

●● Reuse and development of reliable, trusted software

components improves software quality and productivity.

●● Computer language forms:

❍❍ Machine level (microcode, digital signal generators)

❍❍ Assembly language (PC assembler, controllers)

❍❍ High-order languages (FORTRAN, Pascal, C, Ada, ...)

❍❍ Specialized languages (LISP, OPS5, Prolog, ...)

❍❍ Fourth generation languages (databases, windows apps)

Object-Oriented Programming

 1 - 6

THE NATURE OF SOFTWARE

Software Configuration

Software
Project

Plan
Software

Requirements

Specification
Software
Design

Software
Test Plan and

Procedures

Data
Structures

and
Dictionary

Code

User
Documents

Object-Oriented Programming

 1 - 7

THE NATURE OF SOFTWARE

Software Configuration

●● Planning Activity

❍❍ Software Project Plan

●● Requirements Definition Activity

❍❍ Software Requirements

Specification

❍❍ Software Test Plan and

Procedures

❍❍ Data Structures and

Dictionary

❍❍ User Documents

●● Design Activity

❍❍ Software Design Documents

❍❍ Software Test Plan and

Procedures

❍❍ Data Structures and Dictionary

●● Coding and Testing Activity

❍❍ Code

❍❍ Software Test Plan and

Procedures

●● Delivery and Maintenance Activity

❍❍ User Documents

❍❍ Others as needed

Object-Oriented Programming

 1 - 8

HISTORY OF
SOFTWARE DEVELOPMENT

✓✓ Role of Software

✓✓ Industrial View

Object-Oriented Programming

 1 - 9

HISTORY

Role of Software

1950 1960 1970 1980 1990

First Era

Second Era

Third Era

Fourth Era

Batch Oriented

Limited Distribution

Custom Software

Multiuser

Real-Time

Database

Product Software

Distributed Systems

Embedded Smarts

Low-Cost Hardware

Consumer Impact

Desk-Top Systems

Object Orientation

Expert Systems

Neural Nets

Parallel Computing

The explosive growth of computer speeds
and capabilities at a very low cost fuels
the demand for very complex software

and increases customer expectations.

Object-Oriented Programming

 1 - 10

HISTORY

Industrial View ●● Why does it take so

long to finish a

working software

system?

●● Why are development

costs so high?

●● Why can't we find all

software errors before

software is delivered?

●● How can we measure

the progress of

software

development?

●● How can we survive

in the global

economy?

Object-Oriented Programming

 1 - 11

SOFTWARE ENGINEERING PARADIGMS

✓✓ What is Software Engineering?

✓✓ Life Cycle

✓✓ Prototyping Model

✓✓ Spiral Model

✓✓ Software Engineering

Capability

Object-Oriented Programming

 1 - 12

SOFTWARE ENGINEERING

Methods

●● Analysis

●● Design

●● Coding

●● Testing

●● Maintenance

Procedures

●● Project Management

●● Software Quality Assurance

●● Software Configuration Management

●● Measurement

●● Tracking

●● Innovative Technology Insertion

Computer-Aided Software Engineering (CASE)

●● Tools which support the Methods and Procedures

What Is Software Engineering?

Object-Oriented Programming

 1 - 13

SOFTWARE ENGINEERING PARADIGMS

Life CycleSystem
Engineering

Analysis

Design

Coding

Testing

Maintenance

Object-Oriented Programming

 1 - 14

SOFTWARE ENGINEERING PARADIGMS

Life CycleSystem
Engineering

Analysis

Design

Coding

Testing

Maintenance

Is this model realistic?

Object-Oriented Programming

 1 - 15

SOFTWARE ENGINEERING PARADIGMS

Prototyping Model

Requirements
Gathering and

Refinement

Quick
Design

Building the
PrototypeEvaluation

of the

Prototype

Refining the
Prototype

Engineer the
Product

Start

Stop

Object-Oriented Programming

 1 - 16

SOFTWARE ENGINEERING PARADIGMS

Spiral Model
Planning Risk Analysis

EngineeringCustomer Evaluation

Go/ No Go
Decision

Initial

Require-

ments

Gathering

and

Project

Planning

Planning

Based on

Customer

Comments

Evaluations

Risk Analysis

Based on Initial

Requirements

Risk Analysis

Based on

Customer

Reaction

Initial Prototype

Nth-Level Prototype

Engineered

System

Toward a
Completed

System

Start

Object-Oriented Programming

 1 - 17

SOFTWARE ENGINEERING PARADIGMS

Generic Paradigm
1. DEFINITION PHASE

●● System Analysis

●● Software Project Planning

●● Requirements Analysis

2. DEVELOPMENT PHASE

●● Software Design

●● Coding

●● Software Testing

3. MAINTENANCE PHASE

●● Correction

●● Adaptation

●● Enhancement

Object-Oriented Programming

 1 - 18

SOFTWARE ENGINEERING

Software Engineering Capability
and Its Measurement

●● The maturity of an organization's software engineering capability

can be measured in terms of the degree to which the outcome of

the process by which software is developed can be predicted.

❍❍ Predict the amount of time required to develop a software

artifact

❍❍ Predict the resources (number of people, amount of disk

space, etc.) required to develop a software artifact

❍❍ Predict the cost of developing a software artifact

●● The process and the technology go hand in hand.

●● One method of measurement is the Capability Maturity Model for

Software developed by the Software Engineering Institute.

Object-Oriented Programming

 1 - 19

SOFTWARE ENGINEERING

Software Engineering Capability
and Its Measurement

Increasing
Process
Maturity

Initial - Ad hoc;

unpredictable

Repeatable - Costs,

Schedules managed

Defined - Process

institutionalized

Managed - Process

measured/controlled

Optimizing - Process

refined constantly

Object-Oriented Programming

 1 - 20

SOFTWARE COMPLEXITY,
OBJECT-ORIENTED REQUIREMENTS

ANALYSIS (OORA),
AND

OBJECT-ORIENTED DESIGN (OOD)

✓✓ The Inherent Complexity of Software

✓✓ The Attributes of Complex Systems

✓✓ Canonical Form of a Complex System

✓✓ On Designing Complex Systems

Object-Oriented Programming

 1 - 21

SOFTWARE COMPLEXITY

The Inherent Complexity of Software

A simple software system is:

●● completely specified or nearly so with a small set of behaviors

●● completely understandable by a single person

●● one that we can afford to throw away and replace with entirely

new software when it comes time to repair them or extend their

functionality

A complex software system (industrial-strength software) is:

●● one which exhibits a rich set of behaviors

●● extremely difficult, if not impossible, for an individual to

comprehend all of its aspects - exceeds the average human

intellectual capacity

●● one that we can NOT afford to throw away and replace with

entirely new software, so we patch it, maintain out-of-date

development environments for it, and carefully control changes

to it and its operational environment

Object-Oriented Programming

 1 - 22

SOFTWARE COMPLEXITY

The Attributes of Complex Systems

1. A complex system is implemented in a hierarchical structure.

2. The determination of this hierarchy, selecting upper-level

subsystems, lower-level subsystems, and primitive components, is
relatively arbitrary, largely up to the discretion of the designer of the
system.

3. Linkages within the components of a system are usually stronger
than linkages between the components of a system.

4. Complex systems are often composed of only a few different
classes of subsystems, although there may be many instances of
each class.

5. Working complex systems have invariably evolved from working
simpler systems. A complex system designed from scratch has

never worked and cannot be patched to make it work.

Object-Oriented Programming

 1 - 23

SOFTWARE COMPLEXITY

Canonical Form of a Complex System

Classes

Objects

Class Structure = "kind of" hierarchy

Object Structure = "part of" hierarchy

Object-Oriented Programming

 1 - 24

SOFTWARE COMPLEXITY

On Designing Complex Systems
Requirements Analysis - the disciplined approach used to understand a

problem

Design - the disciplined approach used to devise a solution to a problem

The Purpose of Design

To construct a system that:

●● satisfies a given specification

●● conforms to limitations of the target

●● meets constraints on performance

and resource usage

●● satisfies a given set of design

criteria on the artifact

●● satisfies restrictions on the design

process itself, such as cost and

schedule

Elements of Design

Notation - the language of
expression

Process - the steps taken

for the orderly
construction of the
design

Tools - the artifacts that
support the design
process by reducing

the level of effort

